Minimizing CO₂ leakage risk by storage in multi-layered geological settings

Iman R. Kivi^{1,2)}, Roman Y. Makhnenko³⁾, Curtis M. Oldenburg⁴⁾, Jonny Rutqvist⁴⁾ and Victor Vilarrasa²⁾

1) Institute of Environmental Assessment and Water Research (IDAEA), Spanish National Research Council (CSIC), Barcelona, Spain; 2) Global Change Research Group (GCRG), IMEDEA, CSIC-UIB, Esporles, Spain; 3) Department of Civil & Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA; 4) Energy Geosciences Division, Lawrence Berkeley National Laboratory, CA, USA.

Abstract

Carbon capture and storage (CCS) in deep geological formations at the scale of gigatonnes per year is an integral component of any real-world solution to mitigate the climate change crisis. The safety and effectiveness of CCS require that the injected CO_2 permanently resides underground. Herein, we present a computationally efficient, physically-sound numerical model to constrain the CO_2 leakage risk following basin-wide injections and over geological time scales (millions of years), much longer than any assessments performed so far. Simulation results show that the geological setting imposes a primary control on the CO_2 leakage potential. A repetitive layering of aquifers and sealing rocks will significantly hamper CO_2 migration toward the surface, ensuring a secure road toward achieving climate targets.

Introduction

Numerical models

Assessment of the effectiveness of large-scale CCS requires basin-scale numerical simulations of subsurface CO_2 flow and transport through rock layers toward the surface. Such simulations are computationally demanding, limiting the existing estimates of the CO_2 leakage potential to multi-century periods

Once injection stops, the lateral CO_2 movement slows down and the plume reshapes vertically by buoyancy. A 1D model of CO_2 flow and transport can well capture dynamics of upward CO_2 migration in the long term. We simulate vertical CO_2 migration through geological layers for 1 million year.

Results

Intact caprock scenario $k=10^{-20} \text{ m}^2$, $p_0=2.5 \text{ MPa}$ Degraded caprock scenario $k=10^{-16} \text{ m}^2$, $p_0=0.1 \text{ MPa}$

If caprocks are intact (low permeability and high capillary entry pressure), CO_2 migration out of the storage aquifer will be dominated by molecular diffusion, which is an intrinsically slow transport process. Growing amounts of CO_2 dissolves in water with time and are safely trapped deep underground.

If caprocks are degraded (high permeability and low capillary entry pressure), the low capillarity allows CO_2 leakage in free phase into overlying formations. New CO_2 traps could form below secondary caprocks that keep CO_2 far from the surface.

A combination of secondary traps and dissolution contain CO₂ deep underground over geological time scales

Conclusions

- A sequence of caprocks and aquifers, even if the caprocks are pervasively fractured, should allow for secure containment of gigatonnes of CO₂ in the subsurface over geological time scales.
- Accurate characterization and continuous monitoring of the subsurface holds the key for secure geologic CO₂ storage.

Acknowledgements

I.R.K. and V.V. acknowledge funding from the European Research Council (ERC) under the European Union's Horizon 2020 Research and Innovation Program through the Starting Grant GEoREST (<u>www.georest.eu</u>) under Grant agreement No. 801809. I.R.K. also acknowledges support by project PCI2021-122077-2B (<u>www.easygeocarbon.com</u>) funded by MCIN/AEI/10.13039/501100011033 and the European Union NextGenerationEU/PRTR. R.Y.M. acknowledges the support from US DOE through Carbon SAFE Illinois Corridor Project DE-FE0031892. Additional funding for completing this manuscript was provided to C.M.O. and J.R. by the U.S. Department of Energy under contract No. DE-AC0205CH11231 to the Lawrence Berkeley National Laboratory.

